10th CBSE MATHS FORMULAE CHAPTER NO.3: PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

CHAPTER NO.3 Pair of Linear Equation in two variable

1)General form of linear equation: 

1) In one variable;
ax+b=0 (a≠ 0)
2) In two variable:
ax+by+c=0

2) General form of pairs of linear equation in two variables:

a₁x+b₁y+c₁=0   and  a₂x+b₂y+c₂=0

  • Geometrical interpretation and algebraic interpretation

Pair of Linear
Equation
 Algebraic Condition Graphical
 Interpretation 
Algebraic
 Interpretation 
 Consistency
 a₁x+b₁y+c₁=0                       and  
 a₂x+b₂y+c₂=0
  a₁/a₂ b₁/bIntersecting  lines  Unique Solution  Consistency 
 a₁/a₂=b₁/b₂=c/c₂  Coincident lines Infinitely many solution  Dependent    consistency

a₁/a₂=b₁/b₂c/c

 Parallel lines No solutionInconsistent

#Methods of Solving Pair of Linear Equations:

(A) Graphical method:


Step 1: Plot the both same linear equations on the same graph.
Step 2: 1) If Lines are intersecting then there are unique solution then  a₁/a₂ b₁/b₂ plot graph as shown in below graph (Fig. 3.1)






2)If Lines are Coincident then  there are  Infinitely many solution a₁/a₂=b₁/b₂=c/c₂ plot the graph as shown in below graph (Fig.3.2)







3)If lines are Parallel lines then there are No solution then a₁/a₂=b₁/b₂c/c plot graph as shown in below graph (Fig.3.3)





(B) Algebraic Method:

      (ⅰ) Substitution method
      (ⅱ) Elimination method
      (ⅲ) Cross-Multiplication method

(i) substitution method

 a₁x+b₁y+c₁=0  and a₂x+b₂y+c₂=0

Ex. x+y=14    𑁋①
     x-y=4      𑁋
Step 1:- write one variable x in terms of other variable y 
let consider equation
x=14-y

Step 2:- Substitute x in eq 
     14-y-y=4
     14-2y=4
         2y=10
y=5


Step 3:- put y=5 in eq
                x=14-5
x=9

(ii) Elimination method

 a₁x+b₁y+c₁=0  and a₂x+b₂y+c₂=0 

Example:- 2x+y=14    𑁋①

                 x-y=2        𑁋
Step 1:- Multiply eqn ② by 2 and make coefficient of x equal  
             Now,
              2x+y=14𑁋③
              2x-2y=4𑁋④

Step 2:- Substract eqn and to eliminate x, because coefficient of y are same 
              we get 
                    (2x+y)-(2x-2y)=10
                          3y=10
                           y=10/3

Step 3:- Put y=10/3 in eqn 
             x-10/3=2
            x=16/3

(iii) Cross multiplication method 

   For a pair of linear equations, 
      a₁x+b₁y+c₁=0  and a₂x+b₂y+c₂=0 











Comments